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ABSTRACT: The SARS-CoV-2 pandemic has significantly challenged

global public health, highlighting the need for effective therapeutic options. T ——
This study focuses on the papain-like protease (PLpro) of SARS-CoV-2, NG
which is a critical enzyme for viral polyprotein processing, maturation, and @ W
immune evasion. We employed a combined approach that began with HN‘CNH
computational models in a virtual screening campaign, prioritizing °
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exploration

compounds from our in-house chemical library against PLpro. Out of 81
virtual hits evaluated through enzymatic and biophysical assays, we
identified a modest inhibitor featuring a naphthyridine core with an ICs,
of 73.61 uM and a K; of 22 uM. Expanding our exploration, we synthesized

Compound 1
PLpro ICs, = 73.61 uM

Vero CCsy = 23.77 uM
HepG2 CCg, > 50 uM

Compound 85
PLpro ICs, = 15.06 uM

Vero CCgy = 7.47 uM
HepG2 CCy, = 26.33 pM

and assessed 30 naphthyridine analogues, three of which emerged as promising noncovalent, nonpeptidomimetic inhibitors with ICs
values between 15.06 and 51.81 uM. Furthermore, in vitro ADMET assays revealed these compounds to possess moderate aqueous
solubility, low cytotoxicity, and high microsomal stability, making them excellent candidates for further development targeting SARS-

CoV-2 PLpro.
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ince the pandemic declaration by the World Health

Organization in 2020, the SARS-CoV-2 virus, responsible
for severe acute respiratory syndrome (COVID), has caused
over 280 million cases and approximately 6 million deaths
worldwide." Despite the development and administration of
vaccines,2 the emergence of new variants resistant to these
vaccines has raised concerns, which warrant the search for
effective therapeutics against the virus.”

The current antiviral therapies focus on essential targets for
the virus’s life cycle. Progress in the development of drugs
targeting the main protease (Mpro) or 3C-like protease
(3CLpro), such as paxlovid (nirmatrelvir/ ritonavir),* and the
viral polymerase, such as remdesivir’ ™ and molnupiravir,5‘6 has
offered a rapid treatment avenue. However, the challenges
presented by viral mutations and drug resistance underscore the
necessity for alternative strategies.” In this regard, the papain-
like protease (PLpro), which is conserved across various
coronaviruses, plays a critical role in viral replication and
immune evasion.”” Unlike highly mutable proteins such as the
spike protein, PLpro’s conservation among SARS-CoV-2
variants positions it is a promising target for small-molecule
inhibitors. Its essential function also diminishes the likelihood of
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resistance developing due to mutations that would compromise
the enzyme’s activity.'® The catalytic site of PLpro cleaves a
common motif, LXGG/X, present in nonstructural proteins
NSP1/2, NSP2/3, and NSP3/4 proteins. This motif is critical
for viral transcription and replication. Moreover, PLpro binding
loop 2 (BL-2 Loop) controls access to the active site and is
considered the binding site for the noncovalent inhibitor.”""
The N-terminal ubiquitin-like domain of PLpro also acts as an
antagonist to the innate immune pathway, playing a significant
role in evading the host immune system.” Numerous PLpro
inhibitors have been documented in the literature,''™"°
including the compound GRL0617'° (naphthalene scaffold)
with a reported ICy, value of 2.1 uM, 2-phenylthiophene
derivatives'”'® (IC, ranging from 0.11 to 0.97 uM), and the
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Figure 1. Integrated computational and experimental workflow applied for the discovery of novel noncovalent inhibitors of SARS-CoV-2 PLpro.
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Figure 2. (A) 2D diagram of interactions of compound XR8-24 (BL2-Loop binding inhibitor) with PLpro residues of BL2-Loop. (B) Best shape-based

model using the XR8-24 PLpro inhibitor as a template.

Table 1. Statistical Metrics Were Obtained for the PLpro Shape-Based Model”

TOP 1%

TOP 5% TOP 10%

query AUC EF BEDROC
XR8-24-7 0.952 29.06 0.68

EF BEDROC EF BEDROC
13.97 0.69 8.52 0.75

“AUC, area under the ROC curve; EF, enrichment factor; BEDROC, Boltzmann-enhanced discrimination of ROC.

RI173 compound'’ (dimorpholine-thiuram disulfide scaffold)
with an ICy, of 0.2 uM. More recently, SIMR30301, an
octahydroindolo[2,3-a]quinolizine analogue,m was discovered
with an ICs, of 0.0399 uM. Another 85 biarylphenyl benzamide
noncovalent PLpro inhibitors®' were identified that inhibited
PLpro with K; values from 13.2 to 88.2 nM. Among them, the
lead compound Jun12682 inhibited the protease, deubiquiti-
nase, and delSGylase activity of PLpro. In vivo experiments
confirmed Junl2682’s activity against SARS-CoV-2, and its
variants, and has proved it to be a promising oral SARS-CoV-2
antiviral candidate. Despite all efforts, there are still no approved
drugs against SARS-CoV-2 targeting PLpro.

In this work, we have developed, validated, and applied
computational approaches such as shape-based models,
molecular docking, and similarity clustering as part of an
integrated virtual screening campaign. Our primary goal was to
strategically identify promising compounds from the Holistic

Drug Discovery and Development Centre (H3D) in-house
chemical library. The prioritized compounds represented
diverse chemotypes, which were experimentally assessed for
their potential as inhibitors of PLpro. From the most potent hit
of the first round of compounds tested, an optimized
naphthyridine series was synthesized and experimentally
evaluated through enzymatic, differential scanning fluorimetry
(DSF) and early absorption, distribution, metabolism, excretion,
and toxicity (ADMET) assays. The general workflow is
illustrated in Figure 1.

In order to perform the virtual screening (VS), the first step
was to extensively collect data on PLpro inhibitors from the
available literature to develop shape-based models (the first filter
of the VS). This resulted in the identification of 63 PLpro active
compounds. Shape-based models were then built to distinguish
between active and inactive compounds against the SARS-CoV-
2 PLpro. At the time of the literature survey, the most potent
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Figure 3. Schematic representation of the virtual screening workflow
applied for the prioritization of potential candidates against SARS-CoV-
2 PLpro.

PLpro noncovalent inhibitor described was XR8-24, with an
ICy, of 0.56 uM,”" and was selected as the core template for
developing the shape-based models. The data set of XR8-24
derivatives was originally designed through a rational analysis
(structure—activity relationship (SAR)) of a series of naph-
thalene scaffolds known for their activity against SARS-CoV-1
PLpro, despite their low metabolic stability in in vivo assays.”> ™"
As a result, the best model (Figure 2) presented the following
key interactions with PLpro: two aromatic benzene rings
(involved in 7—x stacking interactions with the BL-2 loop
Tyr268 residue), one hydrophobic thiophene (interacting with
the hydrophobic “Groove” residues), one H-bond acceptor/
donor amide group (interacting with the Asp164 and GIn269
residues), and one donor-cation (protonated azetidine) group
(interacting with the Glu167 residue).

To validate the shape-based model, we gathered data on 14
inactive compounds against PLpro. We then simulated
experimental conditions similar to those in a high-throughput
screening campaign and generated 2254 decoys, which were
added to the data set alongside the 14 inactive compounds from
the literature.

The generated model achieved strong validation metrics,
including an area under the ROC curve (AUC) of 0.95, an
enrichment factor (EF) of 8.52, and a Boltzmann-enhanced
discrimination of ROC (BEDROC) of 0.7S, accurately
identifying the top 10% of the tested data set from the literature
(Table 1). Consequently, this shape-based model was employed
as a filter during the virtual screening campaign.

Molecular docking calculations were performed with the
Glide program™~*” to predict the ligands binding mode and to
filter candidates during the virtual screening. The ligands were
obtained from the H3D in-house library, and the 3D structure of
SARS-CoV-2 PLpro was obtained from the Protein Data Bank*
(PDB ID 7LBS'®). In order to assess the docking model
reliability, we conducted the validation using the same data set
collected and prepared from shape-based models, along with the
crystal structure of SARS-CoV-2 PLpro PDB ID 7LBS.'® The
results obtained from the top 10% of the list revealed satisfactory
metrics, an AUC of 0.96, EF of 9.21, and BEDROC of 0.77,
justifying the utilization of the protocol developed for docking
purposes (Supporting Information Figure S1).

The H3D database (6892 compounds) underwent screening
using the most effective SARS-CoV-2 PLpro shape-based
model, resulting in the filtration of the top 10% of the list,
comprising 689 compounds. Subsequently, docking calculations
were performed, applying a threshold of GlideScore < —6.95
kcal'mol™ (filtering to 216 compounds). Then, a cluster
analysis based on chemical similarity and a medicinal chemistry
(MedChem)-based inspection allowed the selection of 81
compounds (Supporting Information File 2) with good scores.
These 81 compounds presented important interactions with
residues of the BL-2 Loop and warranted prioritization for
experimental evaluation (Figure 3).

The 81 compounds were evaluated in vitro for their inhibitory
effects on PLpro, and nine of them exhibited some level of
promising activity (Supporting Information Table S1). Among
these, compound 1 showed an IC, value of 73.60 + 11.94 yuM in
the PLpro enzymatic assay (Figure 4A). In an inhibition test
carried out with or without 0.01% Triton (Figure 4B), no
significant differences were observed in the PLpro enzymatic
activity, suggesting that this compound is not an aggregator.
Kinetic characterization further suggested a competitive
inhibition profile for 1, with a K of 22.40 + 6.7 uM, highlighting
amoderate affinity for the target enzyme (Figure 4C). GRL0617
was used as a positive control for the enzymatic assays
(Supporting Information Figure S2).

Considering the activity of 1, a series of 30 naphthyridines
were synthesized to explore the structure—activity relationships
(SAR) between this naphthyridine chemical series and PLpro
enzyme, with the goal of optimizing the inhibitor interactions
with the PLpro enzyme and ultimately improving the SARS-
CoV-2 antiviral activity (Supporting Information File 3). The
2,8-disubstituted-1,5-naphthyridines were synthesized using a
linear synthetic route to allow diversification at the 2- and 8-
positions of the naphthyridine core.”””" Scheme 1 (Supporting
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Figure 4. (A) Dose—response curve of 1 in the SARS-CoV-2 PLpro enzymatic activity. (B) Inhibition test of 1 in the absence and presence of 0.01%

Triton. (C) Hanes—Woolf plot of compound 1.
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Figure 5. PLpro enzymatic assays for the selected compounds. (A, B, C, and D) Dose—response curves of compounds 82, 83, 84, and 85, respectively,
in the SARS-CoV-2 PLpro enzymatic activity. (E) Compound 85 inhibition test in the absence and presence of 1 mM CHAPS detergent. (F) Hanes—
Woolf plots of compound 8S.
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Figure 6. Differential scanning fluorimetry (DSF) analysis displaying the dose—response curve for compound 1 (A) compared to the noncovalent
inhibitor GRL-0617 (B), which serves as a positive control. The x axis indicates the compound concentration (log M), while the y axis illustrates the
thermoshift (°C). Panel C shows the correlation between potency, as measured by IC;, values (M), and the corresponding thermoshift (°C) from
biochemical assays. Last, panel D presents a bar graph depicting the single-dose thermoshift (AT,,) for compounds 1, 82, 83, 84, and 85. Error bars
represent the standard deviation of the measurements, providing insight into the reproducibility and reliability of the data.

Information) shows the synthetic procedure utilized for the All 30 synthesized naphthyridine analogues were screened in a
second round of PLpro enzymatic assays. The four most potent

analogues of 1. compounds, 82, 83, 84, and 85, presented PLpro IC;, values
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Table 2. In Vitro Enzymatic and ADMET Results for Selected Naphthyridine Analogues

ICs CCso(uM) ADMET
(LM)
Compound Chemical structure PLpro Vero HepG2 Aqueous Microsomal
solubility stability (%)?
(M)
1 73.60+ 23.77 >50 195 98.01/>99/94.35
11.94
82 7977+  >50 >50 200 95.54/97.35/94.22
20.37
33 AN 548+ 4358  >50 180  55.15/60.24/50.41
N 20.63
84 395+ 47.32 >50 175 94.43/93.41/97.36
4.62
85 N 15.06+ 747 26.33 190 54.64/66.61/62.68
2.19

HN
O

“% remaining after 30 min, human/mouse/rat. Data from Kandepedu and collaborators.”

9

ranging from 15.06 to 79.77 uM (Figure SA—D), respectively.
For the most potent compound 85, we performed an inhibition
test with and without 1 mM of 3-((3-cholamidopropyl)
dimethylammonio)-1-propanesulfonate (CHAPS) detergent
to verify whether the inhibition was due to aggregation. No
significant difference was observed (Figure SE). As observed for
the initial hit 1, compound 85 showed a competitive inhibition
mechanism with a K; of 22.93 + 6.41 uM (Figure SF).

The results of differential scanning fluorimetry (DSF) for the
single-dose assays for 1 and its derivatives (Figure 6A—D)
illustrate that changes in melting temperature are induced by the
compounds. Notably, all compounds exhibited a thermoshift
greater than 1 °C, indicating their binding to the PLpro protein.
To further validate the specificity of these interactions, dose—
response assays were conducted. The graphical representations
of these assays show that compound 1 and its derivatives
produce a clear dose—response curve, confirming specific
interactions with the PLpro protein when compared to the
positive control, GLR0617 (Figure 6B). Additionally, upon
comparison of the outcomes derived from both enzymatic and
DSF assays, an observable correlation emerges between the
potency of compounds and their corresponding thermoshift
(Figure 6C). This correlation can be leveraged to optimize the
compound screening process.

The results of the in vitro aqueous solubility, cytotoxicity, and
microsomal stability properties of the five most promising
naphthyridine derivatives (compounds 1, 82, 83, 84, and 85) are
presented in Table 2. All compounds exhibited high aqueous
solubility (175—200 uM), which is beneficial for potential oral
administration and crucial for bioavailability.

All five naphthyridine compounds were evaluated for
cytotoxicity against two mammalian cell lines, namely, Vero
and HepG2, respectively (Table 2). The two most potent PLpro
inhibitors (compounds 1 and 85) demonstrated 2—3-fold
higher toxicity against the Vero cell line (CCg, = 23.77 and 7.47
UM, respectively) and compounds 83 and 84 were equipotent
against Vero cells. On the other side, all compounds
demonstrated weaker toxicity against HepG2, indicating a
more favorable safety profile against the human cell line. The
difference in cytotoxicity observed between HepG2 and Vero
cells can be attributed to the distinct biological characteristics of
these two cell lines. HepG2 cells are derived from human liver
carcinoma and possess more efficient detoxification mecha-
nisms, including cytochrome P450 enzymes, which may
metabolize or neutralize toxic compounds. In contrast, Vero
cells are derived from monkey kidney epithelial cells and lack
many of the metabolic pathways found in liver cells.”' ™** As a
result, compounds that are nontoxic to HepG2 cells may
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Figure 7. SAR analysis of naphthyridine derivatives. (A) R; = (3R)-3-aminopyrrolidin-1-yl group with exploration at R;. (B) R, = (1-methylpiperidin-
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Figure 8. Docking pose of compound 88, the most promising inhibitor of SARS-CoV-2 PLpro identified in this study, along with its ligand—protein
interactions. On the left, the papain-like protease (PLpro) is illustrated using a blue-white surface representation, with the BL-2 loop highlighted in
light pink and the ligand shown as yellow spheres. The right panel provides a zoomed-in view of the ligand—protein interactions, featuring a green
surface to indicate hydrophobic interactions, pink dashed lines representing hydrogen bonds, and black dashed lines denoting 7—7 stacking
interactions. This detailed visualization underscores the binding characteristics of compound 85 and its potential as an effective therapeutic agent.

accumulate to toxic levels in Vero cells, leading to cytotoxic
effects. This disparity underscores the importance of using
different cell lines to assess cytotoxicity, as it helps capture a
broader range of potential toxic responses in varying cellular
environments.”” Future SAR studies should include efforts to
understand and diverge the PLpro activity and cytotoxicity
relationship.

Microsomal stability was tested in human, mouse, and rat liver
microsomes over a 30 min period (Table 2). Compounds
retaining over 50% of their initial concentration after 30 min are

considered to have good metabolic stability, with ideal stability
being over 85%. Compounds 1, 82, and 84 demonstrated high
metabolic stability across the mouse, rat, and human liver
microsomes, with more than 90% of the compound remaining
after 30 min. In contrast, compounds 83 and 85 showed lower
stability, particularly against human microsomes, with only
about 50% remaining.

When the data in Table 2 for compounds 1 and 85 are
reviewed, the replacement of the 1-methylpyridin-2(1H)-one
with 2-methoxypyridine led to a 5-fold improvement in PLpro
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activity but at a cost to metabolic stability in human, rat, and
mouse liver microsomes. This may be due to an increased
susceptibility to demethylation of the methoxy substituent in the
presence of microsomes. In comparison, compound 83’s
apparent loss in metabolic stability in microsomes appears to
be attributed to the piperazinyl group. To better understand the
metabolic fate of compounds 83 and 85, liquid chromatography-
tandem mass spectrometry (LC-MS/MS) metabolic identi-
fication (MetID) could be done in future work to identify the
metabolites. Further SAR expansion at these positions would
also provide valuable information to understand the metabolic
fate for the series.

In this study, an initial SAR exploration was carried out for this
series by keeping the naphthyridine core constant and exploring
diverse substituents at the 8’- (R;) and 2’- (R,) positions on the
naphthyridine core (Figure 7).

When R, is a 3-aminopyrrolidinyl group, the substitution of
R, with a pyridone (1) or methoxypyridine group (85; Figure
7A) resulted in ICg, values of 73.60 and 15.06 uM, respectively.
This 5-fold improvement in PLpro activity may be the result of a
more optimal orientation of the pyridinyl-N (moving from the 4’
to 3’ position) and the increase of the electron donating
character of the N, which enhances the proposed interaction
with the Arg166 residue (Figure 8). This can be further validated
by comparison with 20 where the highly electron-withdrawing
ortho-trifluoromethyl group would significantly reduce the
electron-donating character of the pyridinyl-N. This would
compromise the key electron-donating interaction with Argl166,
which could potentially predict and agree with the observed
complete loss in PLpro activity. The pyrrolidine ring at R; of
compound 85 interacts with Glul67 through both a hydrogen
bond and a salt bridge (Figure 8), as predicted by docking
calculations. At R,, a 6-methoxypyridine interacts by accepting a
hydrogen from Argl66, and the ring engages in z-stacking
interactions with Tyr264. In contrast, the 1-methyl-2-oxo-1,2-
dihydropyridin-4-yl substituent (compound 1) is more polar
and exhibits reduced aromaticity due to the partial conjugation
of the ring caused by the oxo group. This disruption seems to
weaken its interaction with the enzyme’s active site, leading to a
higher ICy, (73.60 uM). Compound 85 also presents interaction
with Glul67 (Figure 8). The flexibility in R, maintains
hydrophobic interactions with the BL-2 loop. On the other
hand, substituents such as 6-(trifluoromethyl)pyridin-3-yl (20;
Figure 7A), despite its high lipophilicity and electronegative
character, showed no activity.

Where R; is a (1-methylpiperidin-4-yl)aminyl group,
substituting R, with a 6-[(2-hydroxyethyl)carbamoyl]pyridin-
3-yl (82; Figure 7B) resulted in moderate activity (ICs, of 79.77
uM) against the PLpro enzyme. This substituent is more polar
and sterically bulky and may impact its ability to make the key
hydrophobic interactions with the enzyme (Supporting
Information Figure S3). Similarly to 85, the pyridinyl-N is in
the proposed more favored 3’-position, which could lead to the
weak retention of PLpro activity. In contrast, the substitution of
R, with 6-[(2-hydroxyethyl)carbamoyl]pyridin-3-yl (16; Figure
7B) at the same position resulted in no measurable activity. This
moiety is more lipophilic and rigid, which may hinder binding
through polar interactions.

While retaining R, as a 4-methanesulfonylphenyl group, the
substitution of R, with a piperazin-1-yl (83; Figure 7C) was
favorable, yielding an ICy, of 54.81 uM. Similar to compounds 1,
82, and 85, a basic group at position R, that is able to make the
key salt bridge interactions with the PLpro Glul67 residue

(Supporting Information Figure S3) is critical for activity. In
contrast, nonbasic substituents that are not able to make the
critical salt-bridge interaction with Glul67 at the same position,
such as (oxan-4-yl)aminyl (9), (1-methyl-2-oxo-1,2-dihydro-
pyridin-4-yl)methyl (10), 3-[(3S)-3-hydroxycyclo-
pentanecarbonyl]phenyl (11), [1-(2-hydroxyethyl)-2-oxo-1,2-
dihydropyridin-4-yl]-methyl (13), (3R)-3-(hydroxymethyl)-
pyrrolidin-1-yl (15), and 4-carbamoyl-piperazin-1-yl (30;
Figure 7C), did not exhibit any activity. For 8, the increased
steric bulk and altered electronic environment due to the oxygen
in the morpholine ring may contribute to the lack of activity.
These findings provide valuable insights into the structural
elements that either contribute to or hinder the inhibitory effects
of the compound on PLpro.

In conclusion, our integrated approach that combined
computational strategies and experimental validation unveiled
a novel class of noncovalent naphthyridine inhibitors of the
SARS-CoV-2 PLpro enzyme. From 81 prioritized virtual hits of
the H3D database, we identified the naphthyridine compound 1
that exhibited moderate activity against PLpro. The limited
structural optimization of this compound led to the identi-
fication of compound 85 with increased potency against PLpro.
Moreover, the naphthyridine series exhibited promising
ADMET profiles with high aqueous solubility and high to
moderate microsomal stability. Cytotoxicity was identified as a
possible concern to developability of the naphthyridine series as
a treatment for SARS-CoV-2. Future work should include SAR
exploration to understand the observed unfavorable enzymatic
vs cytotoxicity relationship and identify SAR trends that could
diverge the series enzymatic activity from the cytotoxicity.
Overall, these findings provide a foundation for the continued
exploration of the naphthyridine scaffold as a potential antiviral
therapeutic agent in future hit-to-lead optimization efforts. The
discovery of noncovalent inhibitors of SARS-CoV-2 PLpro
provides new mechanistic insights into the inhibition of this
critical viral enzyme. Understanding these interactions at the
molecular level can guide the design of more potent and
selective inhibitors. Moreover, given the conserved nature of
PLpro across different coronaviruses, the inhibitors identified in
this study could potentially be effective against a broad spectrum
of coronaviruses including those that may emerge in the future.
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